Faculty of Physics - "Alexandru Ioan Cuza" University, Iasi, Romania"
ro en
Calendar
Thematics for Ph.D. admission contest

Prof. Dr. Diana MARDARE

Thematics:

1. Thin films. Deposition  techniques.
2. Single-crystalline, polycrystalline and amorphous bodies
3. X-Ray diffraction in the study of the thin films structure
4. Photo catalysis. Applications
5. Electronic  processes in photo catalysis.
6. Hydrophilicity. Hidrophobicity.
7. Thin films thickness measurement.
8. The dynamic of the electrons in the solid bodies. The effective mass.
9. Optical transmission and reflection. The optical band gap.
10. Metal-semiconductor contact.

References
[1] D. Mardare, Straturi subtiri semiconductoare si amorfe. Oxidul de titan, Ed. Politehnium, Iasi, 2005.
[2] C. Kittel, Introducere in Fizica Corpului Solid, Ed. Tehnica, Bucuresti, 1972
[3] I.D.Bursuc, N. Sulitanu, Solidul, Fenomene, teorii, aplicatii, Ed. St. Bucuresti, 1991
[4] I. Spanulescu, Fizica straturilor subtiri si aplicatiile acestora, Ed. St. Bucuresti, 1975
[5] A. Fujishima, K. Hashimioto, T. Watanabe, TiO2 Photocatalysis. Fundamentals and Applications, BKC Tokio, Japan, 1999.
[6] K.L.Chopra, Thin Film Phenomena, McGraw-Hill, New York, 1969.

 

Prof. Dr. Tudor LUCHIAN

Thematics:

1. Structural and functional description of aminoacids. The reversible protonation of certain aminoacids. Henderson–Hasselbalch equation.
2.Born energy.
3. Polar interactions and description of ions hydration.
4. Analytical description of transport through ion-selective membranes. Nernst equation.
5. The investigation of physical properties of ion channels embedded in bio-mimetic systems.
6. The quantification of electric resistance and capacitance of a reconstituted lipid membrane.
7. Macroscopic description of diffusion processes. The solution of diffusion equation for a punctual source of matter.
8. Uni-dimensional, macroscopic description of charged particles diffusion within an electro-chemical gradient, with the help of Nernst-Planck formalism.
9. Markov analysis of the probabilistic reversible transitions of an ion channel between two sub-states.
10. The description of  electric interactions in aqueous media, in the presence of dissolved salts. The Debye-Huckel theory.
References
1.    T. Luchian – ‘Introducere in biofizica moleculara si celulara’, ‘Alexandru I. Cuza’ University Publishing House, Iasi, 2001
2.    Molecular Cell Biology (3rd edition), 1995. Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P., Darnell, J. W. H. Freeman and Company, New York
3.    Molecular and Cellular Biophysics, 2006, Meyer B. Jackson, Cambridge University Press
4.    T. Luchian – ‘Electrofiziologie moleculara. Teorie si Aplicatii’, Sedcom Libris, Iasi, 2006
5.    Physical Chemistry 7e, by Peter Atkins & Julio de Paula

 

 Prof. Dr. Alexandru STANCU

Thematics:

1. Gauss’s Law
2. The method of images in electrostatics
3. Conductors in electrostatics
4. Electric field in matter
5. Ampère’s Law in magnetostatics
6. Magnetic vector potential
7. Electromagnetic induction
8. Maxwell’s equations in vacuum /
9. Electromagnetic waves in vacuum
10. Magnetic field in matter
References
D. Griffiths, “Introduction to electrodynamics”, Prentice-Hall, Inc., 1999, 3rd edition

 

Prof. Dr. Marina-Aura DARIESCU

Thematics:

1. Maxwell's Equations
2. Lorentz-Einstein transformations. Minkowski space
3. Photoelectric and Compton Effects. De Broglie hypothesis.
4. Quantum oscillator
5. Schrödinger Equation. The hydrogen atom.
6. Quantum theory of momentum operators
7. Pauli's theory of spin
8. Bose-Einstein Statistics
9. Fermi-Dirac Statistics
10. Debye's theory of heat capacities

References
1. C. Kittel, Introduction to Solid State Physics, 8-th Ed., Wiley Press, 2005.
2. P.J.E.Peebles, Quantum Mechanics , Princeton University Press, New Jersey, 1992
3. C.Dariescu, Marina-Aura Dariescu, I. Gottlieb, Capitole de baza in Mecanica Cuantica.  Microparticule si Campuri  Ed. Venus, Iasi, 2007
4. S. Datta, Electronic transport in mesoscopic sistems Cambridge Univ. Press, 2003
5. M. Ignat. Termodinamica si fizica statistica. Ed. Univ. Al. I. Cuza Iasi, 1983-1984

Prof. Dr. Ciprian DARIESCU

Thematics:

1. Maxwell's Equations
2. Lorentz-Einstein transformations. Minkowski space
3. Photoelectric and Compton Effects. De Broglie hypothesis.
4. Quantum oscillator
5. Schrödinger Equation. The hydrogen atom.
6. Quantum theory of momentum operators
7. Pauli's theory of spin
8. Bose-Einstein Statistics
9. Fermi-Dirac Statistics
10. Debye's theory of heat capacities

References
1. C. Kittel, Introduction to Solid State Physics, 8-th Ed., Wiley Press, 2005.
2. P.J.E.Peebles, Quantum Mechanics , Princeton University Press, New Jersey, 1992
3. C.Dariescu, Marina-Aura Dariescu, I. Gottlieb, Capitole de baza in Mecanica Cuantica.  Microparticule si Campuri  Ed. Venus, Iasi, 2007
4. S. Datta, Electronic transport in mesoscopic sistems Cambridge Univ. Press, 2003
5. M. Ignat. Termodinamica si fizica statistica. Ed. Univ. Al. I. Cuza Iasi, 1983-1984

 

Prof. Dr. Ovidiu Florin CALÅ¢UN

Thematics:

1. Magnetized media. Fundamental formula. Origin of magnetism.
2. Diamagnetism.
3. Paramagnetism.
4. Ferromagnetism. Phenomenological aspects. Hysteresis curves. Permeability and susceptibility.
5. Phenomenological models for magnetization processes.
6. Magnetostrictive materials. Magneto – elastic interactions.
7. Soft and hard materials.
8. Magnetic nanoparticles for biomedical applications.
9. Magnetic thin films.
10. Multiferroic materials.

References
1. E. Purcell (1987) Electricity and Magnetism (Berkeley Physics Course, Vol. 2)
2. Al. Stancu (2006) Magnetization process in particulate ferromagnetic media, Cartea Universitara Bucuresti
3. G. Bertotti (1998) Hysteresis in Magnetism ( For Physicists, Material Scientists and Engineers ) Academic Press Boston
4. A. Goldman (1999) Handbook of Modern Ferromagnetic Materials Kluwer Academic
5. B. D. Cullity, C.D. Graham (2009) Introduction to the magnetic materials Willey IEEE Press
6. D. Jiles (1991) Magnetism and Magnetic Materials  Chapman & Hall, New York

 

Prof. Dr. Liliana MITOÅžERIU

Thematics:

1.    Clasificarea substantelor din punct de vedere electric. Exemple si aplicatii
2.    Dielectrici: definitii, proprietati ecuatii fundamentale
3.    Ecuatiile campului electric in medii dielectrice. Relatia dintre vectorii E, D, P
4.    Energia campului electric in substanta
5.    Ecuatiile campului magnetic in substanta. Relatia intre vectorii B, M, H
6.    Energia campului magnetic in substanta
7.    Ecuatii de trecere ale campului electric in substanta
8.    Dezvoltarea de multipol a potentialului electric
9.    Dipol electric. Campul si potentialul electric generat de un dipole. Interactiunea dipolului cu campul electric (forte, energie)
10.    Circuite RLC in current alternativ
11.    Dielectrici nepolari. Ecuatia Clausius Mosotti
12.    Dielectrici polari. Formula Langevin.

Bibliografie

1.    L. Mitoseriu, V. Tura, Fizica dielectricilor, Ed. Univ.”Al.I. Cuza” Iasi, 1999
2.    L. Mitoseriu, V. Tura, Electricitate si magnetism, Ed. Univ.”Al.I. Cuza” Iasi, 2000
3.    M. Socaciu, Dielectrici ÅŸi aplicaÅ£ii, Ed. Pantheon, Craiova, 1994
4.    I. Bunget, M. Popescu, Fizica dielectricilor solizi, Ed. Stiintifica si Enciclopedica, Bucuresti, 1978
5.    A. Jonsker, Dielectric relaxation in solids, Chelsea Dielectric Press., London, 1983
6.    C. Papusoi, Magnetismul, Ed. Univ. Al.I. Cuza Iasi, 1987
7.    E. Burzo, Fizica fenomenelor magnetice  vol I, II, III, Editura Academiei BucureÅŸti, 1979 
8.    S. Chikazumi, Magnetismul Editura ÅžtiinÅ£ifică ÅŸi Enciclopedică, BucureÅŸti 1981
9.    M. H.  Choudhury,  Electromagnetism, John Wiley &  Sons,  New York, 1989
10.    I. S. Grant, W. R. Phillips, Electromagnetism,  John Wiley & Sons, London, 1975
11.    J. Grindlay, An introduction to the phenomenological theory of ferroelectricity, Pergamon Press, Oxford, 1970
12.    A. Jonsker, Dielectric relaxation in solids, Chelsea Dielectric Press., London, 1983

 

Prof. Dr. Maria NEAGU

Thematics:

1. Magnetic materials. Magnetization processes.
2. Methods to study the magnetic properties of materials.
3. The phenomenon of electromagnetic induction, the self-inductance and mutual inductance.
4. X-ray diffraction. Determination of crystal structure.
5. Electromagnetic radiation. Maxwell's equations.
6. Polarization of optical radiation. Polarizing prisms.
7. Absorption of optical radiation.
8. Interference of the optical radiations. Interference devices.
9. Magneto-optical effects.
10. Magnetic thin films. Methods of obtaining and characterization.

References
1. S. V. Vonsovski, Magnetismul, Editura Ştiinţifică şi Enciclopedică, Bucureşti (1981)
2. D. Jiles, Introduction to magnetism and magnetic materials, Chapman & Hall, London (1995)
3. H. Gavrilă, H. Chiriac, P. Ciureanu, V. Ioniţă, A. Yelon, Magnetism Tehnic şi Aplicat, Editura Academiei Române, Bucureşti (2000)
4. C. Kittel,  Introducere in Fizica Corpului Solid, Ed. Tehnica, Bucuresti, (1972)
5. V. Pop, I. Chicinas, N. Jumate, Fizica materialelor. Metode experimentale, Presa Univ. Clujeana, Cluj-Napoca (2001)
6. M. Born, E. Wolf, Principles of optics, Pergamon Press, London (1959)
7. M. Klein, Optics, John Wiley & Sons Inc., New York (1970)
8. V. Pop, Bazele opticii, Intreprinderea Poligrafica Iasi (1988)
9. M. Neagu, Metode de măsură şi control nedistructiv a materialelor, Ed. Univ."Al. I. Cuza", Iaşi (2003)
10. M. Neagu, Elipsometrie. Magneto-optică, Editura Stef, Iaşi (2007)

 

Prof. Dr. Nicoleta DUMITRASCU

Thematics:

1. Conservation laws (energy, impulse, kinetic moments)
2. Fundamental principles and laws in fluid dynamics (Navier-Stokes’s law)
3. Electromagnetic waves, radiations. Maxwell’s equations
4. Generalities on waves phenomena :dispersion, diffusion, diffraction and light absorption
5. Atomic models. Atomic and molecular spectra
6. Surface and volume properties of solid state (electrical, thermal, optical, magnetic)
7. Classes of materials. Applications
8. Basic tools for surface analysis of materials
9. Plasma definition. Classifications and methods of production
10. Plasma diagnosis (electrical and optical).

References
1. V. Savelyev, “Physics”, vol. III, Mir Publishers Moscow, 1979
2. D. Halliday and R. Resnick, “Fizica”, vol. II, Ed. Didactică şi Pedagogică, Bucureşti, 1975
3. M. Ţibu, ”Fizică atomică şi nucleară”, Ed. Univ. “Al. I. Cuza”, Iaşi, 1985
4. M. A. Eliaşevici, “Spectroscopia atomică şi moleculară”, Ed. Academiei, Bucureşti, 1966
E. H. Wichmann, “Cursul de fizică” de la Univ. Berkeley, Ed. Didactică şi pedagogică, Bucureşti, 1983
5. H. Boenig  “Fundamentals of Plasma Chemistry and Tehnology“, Technomic Publishing Co.Inc. Lancaster Basel, 1990
6. “Practical Surface Analysis “, 2- edition, Edited by D. Briggs, M. P. Seah, John Wiley & Sons Ltd, 1990
7. Biomaterials Science, An intoduction to materials in medicine, Eds. B. D. Ratner and A. S. Hoffman, Academic Press, New York, 1996
8. I. I. Popescu, D.Ciubotaru, “Bazele fizicii plasmei”, Ed.Tehnică, 1987
9. M. Venugopalan, ,,Reactions under Plasma Condition,, New York, 1971
10. A. Mitchell, M. Zemansky, “Resonance Radiation and Excited Atoms”, Cambridge University Press, 1971.

 

Prof. Dr. Maricel AGOP

Thematics:

1. Maxwell's Equations
2. Lorentz-Einstein transformations. Minkowski space
3. Photoelectric and Compton Effects. De Broglie hypothesis.
4. Quantum oscillator
5. Schrödinger Equation. The hydrogen atom.
6. Quantum theory of momentum operators
7. Pauli's theory of spin
8. Bose-Einstein Statistics
9. Fermi-Dirac Statistics
10. Debye's theory of heat capacities

References
1. C. Kittel, Introduction to Solid State Physics, 8-th Ed., Wiley Press, 2005.
2. P.J.E.Peebles, Quantum Mechanics , Princeton University Press, New Jersey, 1992
3. C.Dariescu, Marina-Aura Dariescu, I. Gottlieb, Capitole de baza in Mecanica Cuantica.  Microparticule si Campuri  Ed. Venus, Iasi, 2007
4. S. Datta, Electronic transport in mesoscopic sistems Cambridge Univ. Press, 2003
5. M. Ignat. Termodinamica si fizica statistica. Ed. Univ. Al. I. Cuza Iasi, 1983-1984


Prof. Dr. Dana Ortansa DOROHOI

Thematics:

1. Interference of light. Interferential devices. Aplications
2. Centered Optical Systems utilized in Gaussian Aproximation
3. Molecular Spectroscopy (UV VIS, IR, Raman). General notions
4. Light polarization. Devices for light polarization. Aplications
5. Propagation of electromagnetic waves through uniaxial anizotropic media.
6. Liquid Crystals. Aplications
7. Intermolecular interactions in condensed media.
8. Models of simple liquids. Aplications
9. Optical and spectroscopical methods for the study of intermolecular interactions in solutions.
10. Electro-optical parameters of the excited molecules determined by spectral methods and based on the theory of simple liquid.

References
1. V. Pop, Optica, Ed.Universitatii, 1988
2. D. Dorohoi, Fundamental Optics, Addleton, 2011
3. M.A. Eliasevici, Spectroscopia atomica si moleculara, Ed. Academiei Romane, Bucuresti, 1966
4. D.Dorohoi, Fizica Starii lichide, Ed. Gama, 1990
5. I. Georgescu, I. Petrea D. Borsan, Fizica Starii Lichide, Ed. Didactica si Pedagogica, Bucuresti, 1982.
6. N.G. Bakhshiev, Spectroscopia Mejmoleculiarnih vzaimodeistvii, Izd. Nauka, Leningrad, 1972


Prof. Dr. Lucel SIRGHI

Thematics:

1. Methods for obtaining laboratory plasmas.
2. Physical and chemical processes in the plasma and at the surface of solid bodies subjected to the action of plasma.
3. Functional surfaces. Applications in environmental protection, energy and biomedicine.
4. Plasma methods of fabrication of functional surfaces.
5. Biomaterials. Properties and synthesis.
6. Plasma assisted synthesis of biomaterials. Plasma assisted thin film deposition.
7. Surface Forces in air. Van der Waals, electrostatic, magnetic, and capillary forces.
8. Surface forces in liquids. Surface charging. The DLVO theory
9. Fundamentals of atomic force microscopy. Construction and working principle of atomic force microscope.
10. Working modes of atomic force microscope. AFM measuring of adhesive force.

References
1. Gheorghe Popa, L. Sirghi, Fundamentals of Plasma Physics, University Al. Ioan Cuza, Iasi, 2000.
2. MA Lieberman, AJ Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 2005.
3. JN Israelachvili, Intermolecular and Surface Forces, Elsevier, 2011.
4. Biomaterials: Principles and Practices (ed. JY Wong, JD Bronzino, DR Peterson) Taylor and Francis, 2013.
5. Greg Haugstad, Atomic Force Microscopy: Understanding Basic and Advanced Modes Applications, John Wiley & Sons, NJ, 2012.

Prof. Dr. Felicia IACOMI

Thematics:

1. Symmetry and crystal structure
2. Crystalline defects
3. Crystal binding
4. Energy bands. Material classification
5. Material elaboration methods
6. Phase diagrams in material science
7. Electrical conductivity and Ohm’s law
8. X-ray diffraction method in the study of crystalline structure
9. Microscopic methods in materials investigation
10. Spectroscopic methods in  materials investigation

References
1. C. Kittel, Introduction in solid state physics, eigth edition, tocs.ulb.tu-darmstadt.de/125610068.pdf
3. Neil W. Ashcroft, N. David Mermin, Solid state Physics,1971
4. G. Kostorz, Phase transformation in materials, 2001
5. B. D. Cullity, Elements of X-ray diffraction, 1956
6. Y. Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2008


Prof. Dr. Octavian BALTAG

Thematics:

1. Electromagnetic field spectrum. Electromagnetic pollution
2. The energy and impulse of the electromagnetic field. Poynting vector.
3. Measurement of the magnetic fields. Applications
4. Measurement of the magnetic properties of the substance
5. Interaction of the electromagnetic filed with living matter.
6. Heat and mass transfer phenomena in living matter
7. Bioelectromagnetic phenomena and physiological processes
8. Bioelectric phenomena in cellular membrane
9. Theoretical and experimental calorimetry
10. Infrared radiation and applications 

References
Biophysics master courses

C.S. I Dr. Horia CHIRIAC

Thematics:

1. Ferromagnetism
2. Antiferromagnetism
3. Magnetic anisotropy
4. Magnetoelastic effects
5. Magnetic domains and magnetization processes
6. Soft magnetic materials
7. Hard magnetic materials
8. Amorphous and nanocrystalline magnetic materials
9. Magneto-transport phenomena in ferromagnetic materials
10. Characterization of magnetic materials

References:
[1] B.D.Cullity, C.D.Graham, “Introduction to Magnetic Materials”, IEEE PRESS, 2009.
[2] S. Chikazumi, “Physics of Ferromagnetism “, 2nd edition, OXFORD SCIENCE PUBLICATIONS, 1997.

Prof. dr. Dumitru LUCA

Thematics:

1. Collision processes. Cross-section. Mean free path.
2. Glow discharge in low-pressure gases.
3. Surface tension. Surface energy. Contact angle.
4. Band structure of solid surfaces and interfaces.
5. Metal-semiconductor contact. Semiconductor heterojunctions.
6. Photoelectric effect. Applications.
7. Photometry - theoretical background and applications.
8. Thin films. Preparation methods.
9. Measuring thickness and refraction index of transparent thin films.
10. Physical methods for structural, morphological and elemental characterization of thin films.

References
1. M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons, 2005.

2. I. Georgescu, I Petrea D. Borsan, Fizica stării lichide, Ed. Didactică si Pedagogică, Bucureşti, 1982.

3. V. Pop, Optica, Ed. Universităţii “Al. I. Cuza”, Iaşi, 1988.

4. I. D. Bursuc, N. Sulitanu, Solidul: fenomene, teorii, aplicatii, Ed. Știinţifică Bucuresti, 1991

5. R.R. Willey, Practical design and production of optical thin films, Marcel Dekker, New York, Basel, 2002

6. K. Wasa, M. Kitabatake, H. Adachi, Thin film materials technology, Springer, 2004. 

7.http://static.ifp.tuwien.ac.at/homepages/Personen/duenne_schichten/pdf/t_p_ds_chapter4.pdf

Prof. dr. Liviu LEONTIE

Thematics:

1. Basic elements of physical crystallography.
2. Structural analysis of materials by X-ray diffractometry.
3. The energy band model. Material classification.
4. Semiconductor thin films. Preparation techniques and characteristics.
5. Methods for determining thin-film thickness.
6. Band-gap determination of a semiconductor material.
7. Metal-semiconductor contact.
8. Phase diagrams. Thermal analysis techniques.
9. General characteristics of the Earth's atmosphere. Atmospheric stability.
10. Atmospheric radiative models.

References
1. Peter M. Martin, Handbook of Deposition Technologies for Films and Coatings, Third Edition: Science, Applications and Technology, Elsevier, Amsterdam-Boston, 2010.
2. V. Georgescu, Tranzitii de fază. Metode de studiu, Ed. Univ. "Al. I. Cuza", Iaşi, 1998.
3.  Nicolae Sulitanu, Fizica Suprafetei Solide, Ed. Univ. ”Al. I. Cuza”, Iasi, 1997.
4. I. D .Bursuc, N. Sulitanu, Solidul, Fenomene, teorii, aplicatii, Ed. Șt. Bucuresti, 1991.
5. I. Dima, I. Munteanu, Materiale si dispozitive semiconductore, Ed. Did. Ped. Bucuresti, 1980.
6. I. Spînulescu, Fizica straturilor subţiri şi aplicaţiile acestora, Ed. Şt., Bucureşti, 1975.
7. C. Kittel, Introducere în Fizica Corpului Solid, Ed. Tehnică, Bucuresti, 1972.
8. I. Pop, V. Nicolescu, Structura corpului solid. Metode fizice de studiu, Ed. Acad. R. S. R., Bucuresti, 1971.
9. K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York, 1969.
10. L. Leontie, Fizica atmosferei, Ed. Politehnium, IaÅŸi, 2004.
11. L. Leontie, Introducere în fizica atmosferei (partea I)”, Ed. Gh. Asachi, Iaşi, 2002.

Assoc. Prof. Dr. Cristian ENACHESCU

Thematics:

1. Gauss’s Law
2. The method of images in electrostatics
3. Conductors in electrostatics
4. Electric field in matter
5. Ampère’s Law in magnetostatics
6. Magnetic vector potential
7. Electromagnetic induction
8. Maxwell’s equations in vacuum /
9. Electromagnetic waves in vacuum
10. Magnetic field in matter 


References
D. Griffiths, “Introduction to electrodynamics”, Prentice-Hall, Inc., 1999, 3rd edition

Assoc. Prof. Dr. Laurentiu STOLERIU

Thematics:

1. Gauss’s Law
2. The method of images in electrostatics
3. Conductors in electrostatics
4. Electric field in matter
5. Ampère’s Law in magnetostatics
6. Magnetic vector potential
7. Electromagnetic induction
8. Maxwell’s equations in vacuum /
9. Electromagnetic waves in vacuum
10. Magnetic field in matter 


References
D. Griffiths, “Introduction to electrodynamics”, Prentice-Hall, Inc., 1999, 3rd edition

Contact Us

Loading...